Existentially closed Leibniz algebras and an embedding theorem
نویسندگان
چکیده
Abstract In this paper we introduce the notion of existentially closed Leibniz algebras. Then use HNN-extensions algebras in order to prove an embedding theorem.
منابع مشابه
Tracial Algebras and an Embedding Theorem
We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct...
متن کاملLeibniz Algebras and Lie Algebras
This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
متن کاملExistentially closed CSA-groups
We study existentially closed CSA-groups. We prove that existentially closed CSA-groups without involutions are simple and divisible, and that their maximal abelian subgroups are conjugate. We also prove that every countable CSA-group without involutions embeds into a finitely generated one having the same maximal abelian subgroups, except maybe the infinite cyclic ones. We deduce from this tha...
متن کاملExistentially Closed Dimension Groups
A partially ordered Abelian group M is algebraically (existentially) closed in a class C M of such structures just in case any finite system of weak inequalities (and negations of weak inequalities), defined over M, is solvable in M if solvable in some N ⊇ M in C. After characterizing existentially closed dimension groups this paper derives amalgamation properties for dimension groups, dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematics
سال: 2021
ISSN: ['2336-1298', '1804-1388']
DOI: https://doi.org/10.2478/cm-2021-0015